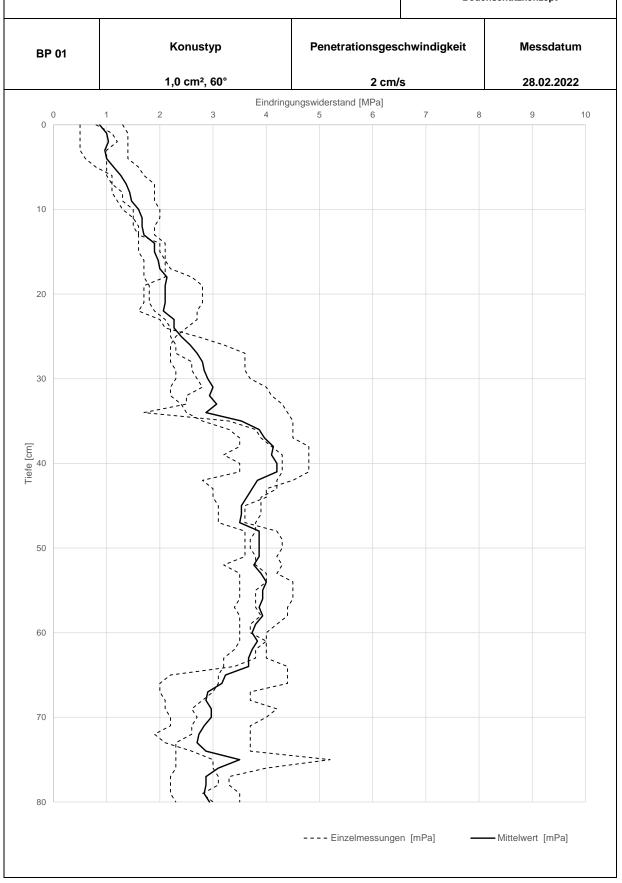


Gastransportleitung AUGUSTA der bayernets GmbH

Antragsunterlagen für das Planfeststellungsverfahren gemäß § 43 Energiewirtschaftsgesetz (EnWG) im Regierungsbezirk Schwaben


13.9 Ergebnisse Penetrologger

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:

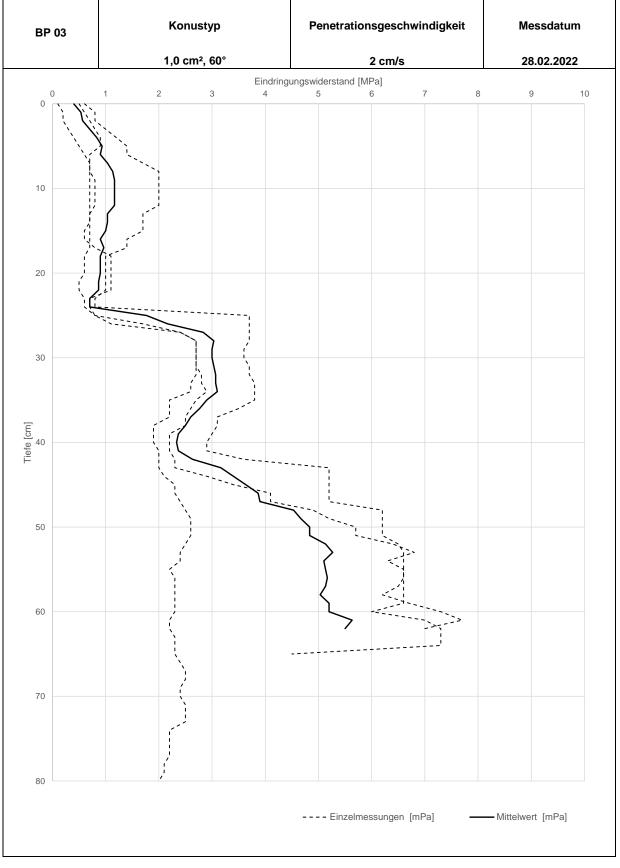
Penetrologger Typ Eijkelkamp 06.15.SA

 Anlage:
 Anl. 9

 Datum:
 11.04.2022

 Bearbeiter:
 Schö, Behr

 Projekt-Nr.:
 P7852


Projekt:

BP 02	1,0 cm², 60°	2 cm/s	28.02.2022
0 1		dringungswiderstand [MPa]	8 9 10
10			
20			
30			
40			
60			
70			
80			

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

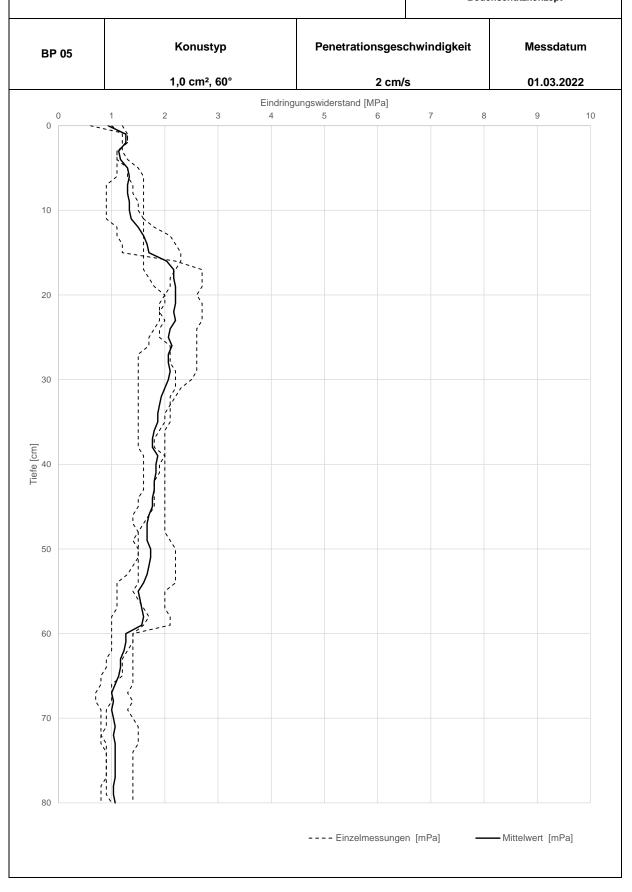
Projekt-Nr.: P7852 Projekt-Nr.: P7852 Projekt: Penetrologger Typ Eijkelkamp 06.15.SA Projekt: Gastransportleitung Wertingen - Kötz Bodenschutzkonzept

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:

BP 04	1.0 c	m², 60°		2 cm/s		01.03.2	2022
	.,,,		ngungswidersta		,	01.00.2	
0 1	2	3 4	5	6	7 8	9	10
)``;						
(
10	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
20							
20							
		`					
30	',,						
	•)				
,							
40		₹ (1)					
		127-					
		Ê					
50		(1)					
30							
		5.5					
60							
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	`						
70							
80		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)			

 Anlage:
 Anl. 9

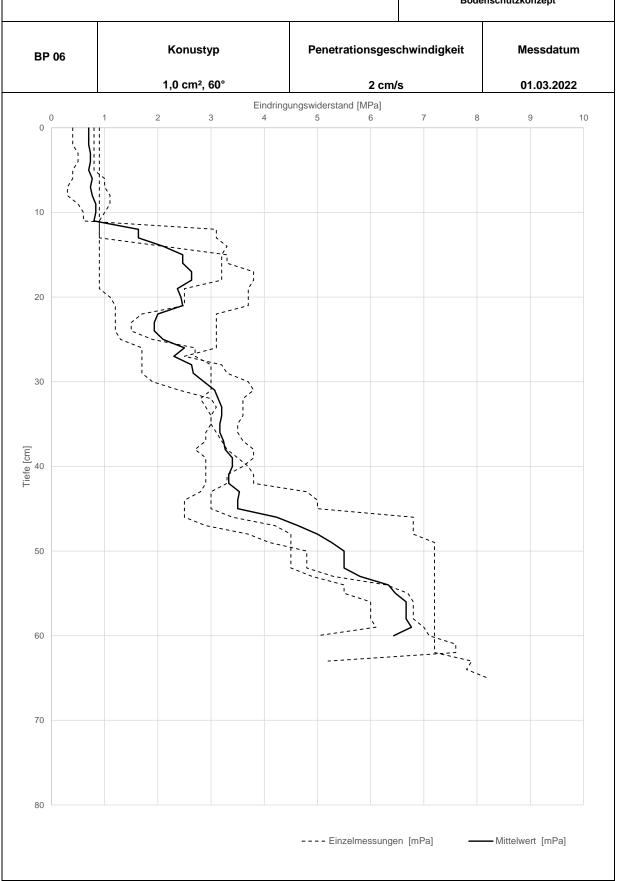

 Datum:
 11.04.2022

 Bearbeiter:
 Schö, Behr

 Projekt-Nr.:
 P7852

Projekt:

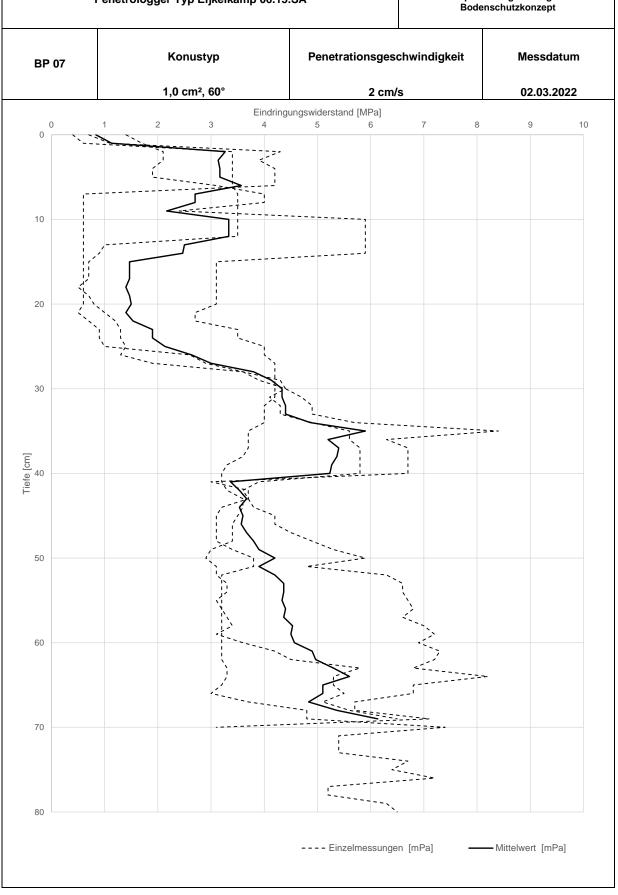
Penetrologger Typ Eijkelkamp 06.15.SA



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA

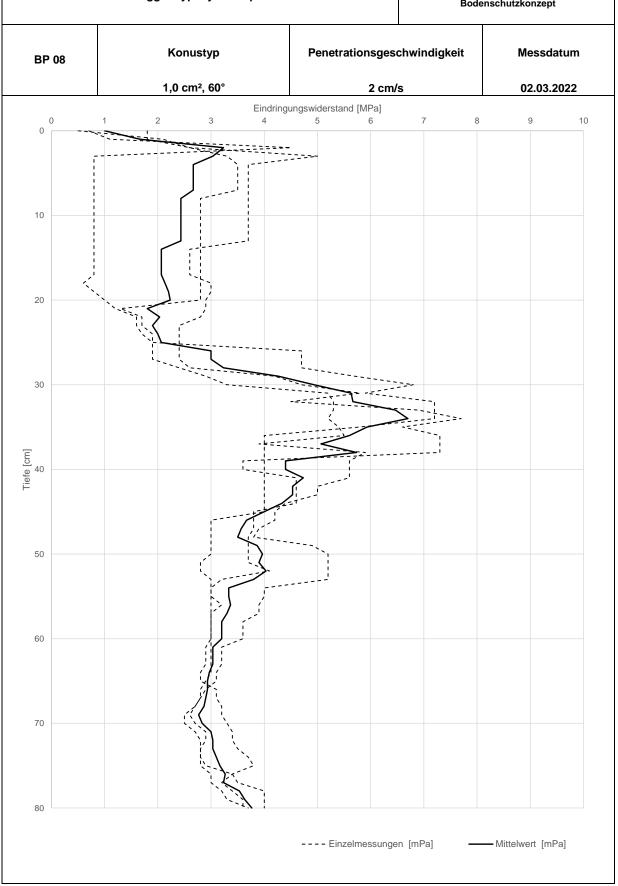


Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:

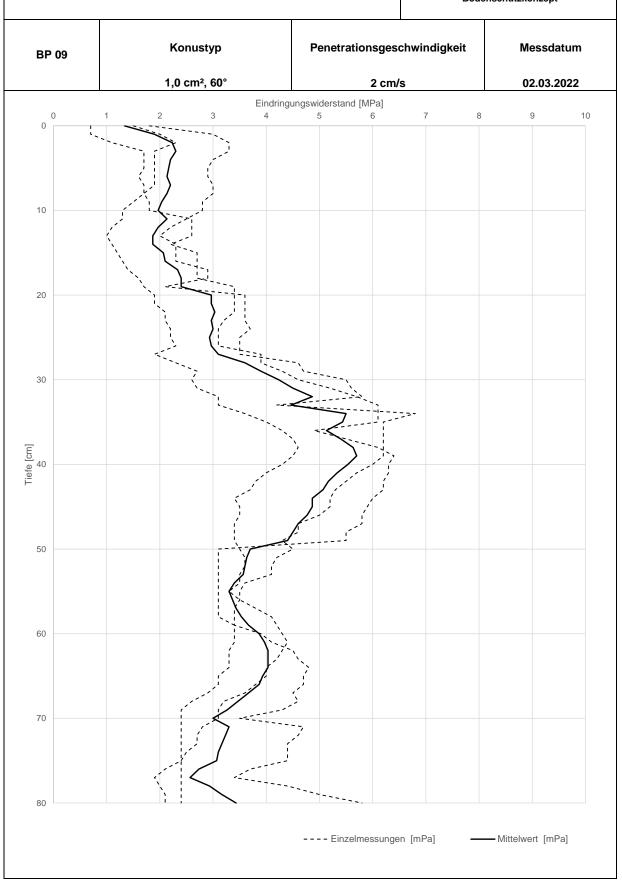
Penetrologger Typ Eijkelkamp 06.15.SA

Gastransportleitung Wertingen - Kötz
Bodenschutzkonzept



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:


Penetrologger Typ Eijkelkamp 06.15.SA

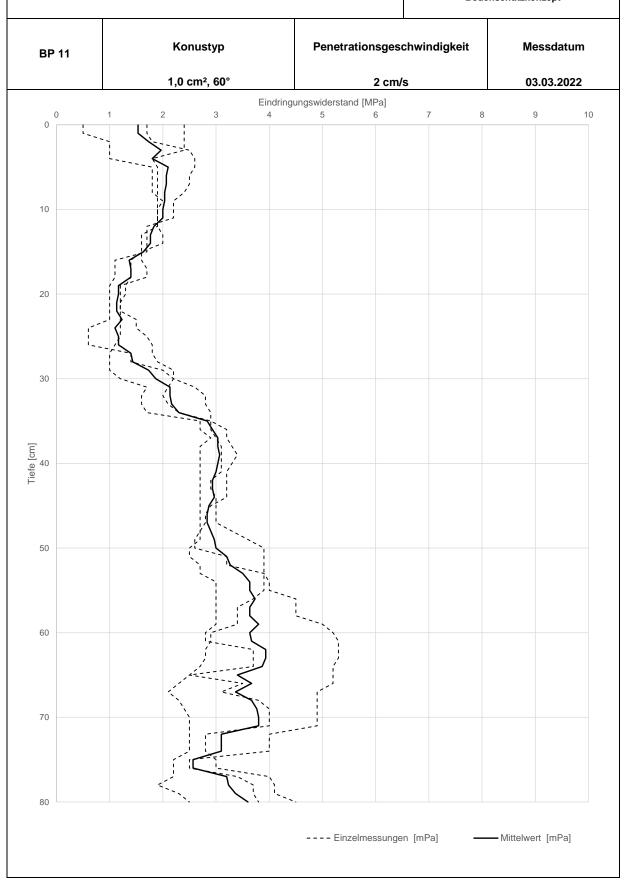
	Anlage:	Anl. 9
	Datum:	11.04.2022
	Bearbeiter:	Schö, Behr
	Projekt-Nr.:	P7852
	Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Schö, Behr
Projekt-Nr.:	P7852

Projekt:

BP 10	Konustyp 1,0 cm², 60°	Penetrationsgeschwindigkeit 2 cm/s	Messdatum 02.03.2022
0 1		dringungswiderstand [MPa]	3 9 1
10			
20			
30	=====================================		
40			
50		>	
60			-
70			
80		·	

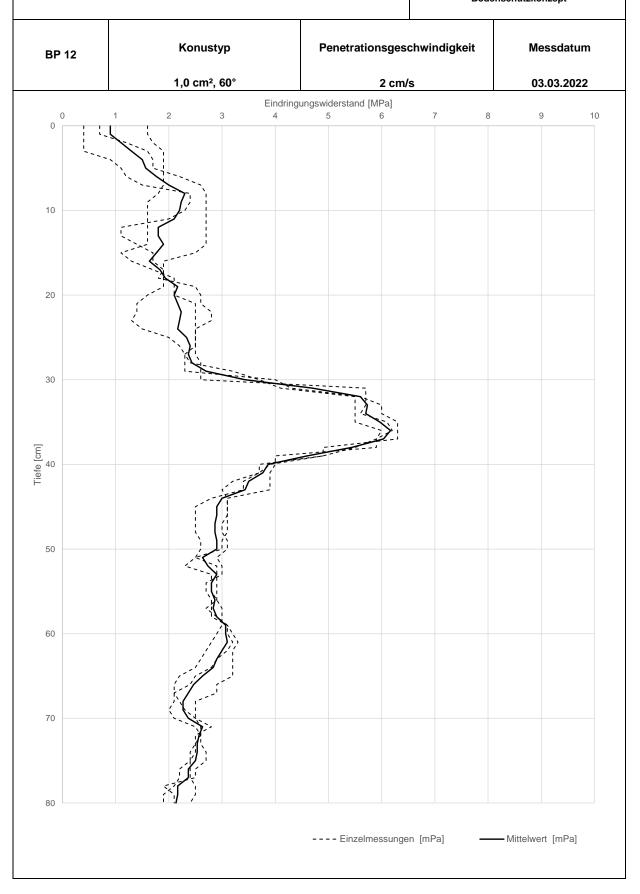


DR. SPANG

Ingenieurgesellschaft für Bauwesen, Geologie und Umwelttechnik mbH

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
	Datum: Bearbeiter:

Projekt:

Gastransportleitung Wertingen - Kötz Bodenschutzkonzept

Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

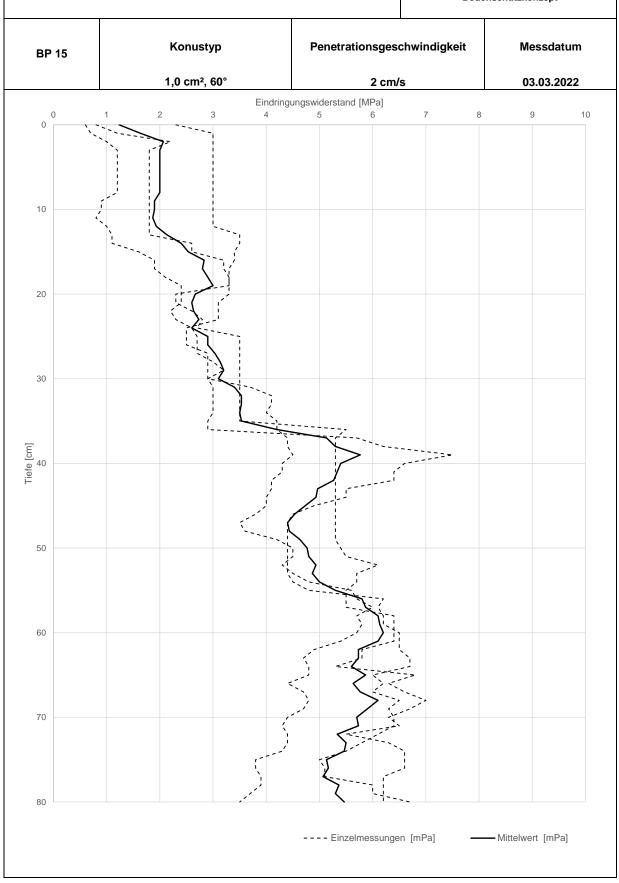
BP 13	Konustyp	Penetrationsgesc		Messdatum
	1,0 cm², 60°	2 cm/s dringungswiderstand [MPa]	<u> </u>	03.03.2022
0 1	2 3 4	5 6	7 8	9 10
10				
20				
30				
40				
50				
60				
70				
80				

DR. SPANG

Ingenieurgesellschaft für Bauwesen, Geologie und Umwelttechnik mbH

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:


	1,0 cr	m², 60°		2 cm/s		03.03.	2022
0 1	2		ringungswiderstan 5	nd [MPa] 6 7	8	9	10
10							
20							
30							
40	[1	;>·			
50							
60	· · · · · ·						
70							
80				>			

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

4.0							04.00.0000		
1,0 0	:m², 60°	Eindring	ungewiderete		S		04.03.	2022	
2	3	4	5	6 	7	8	9	10	
ر <u>ا</u> ز									
(
,,,,									
``									
	```\`\\								
		<u>i</u>							
		`}							
	-1-1	<u>-i</u>							
	1/								
``,									
3	7,7								
	`}								
	1								
/ <u> </u>	′								
	,								
1									
	) [}								
<.X	í								
		1,0 cm², 60°	Eindring	Eindringungswidersta	Eindringungswiderstand [MPa]	Eindringungswiderstand [MPa]	Eindringungswiderstand [MPa]	Eindringungswiderstand [MPa]	



Anlage: Datum: Anl. 9 11.04.2022 Bearbeiter: Behr Projekt-Nr.: P7852

Projekt:

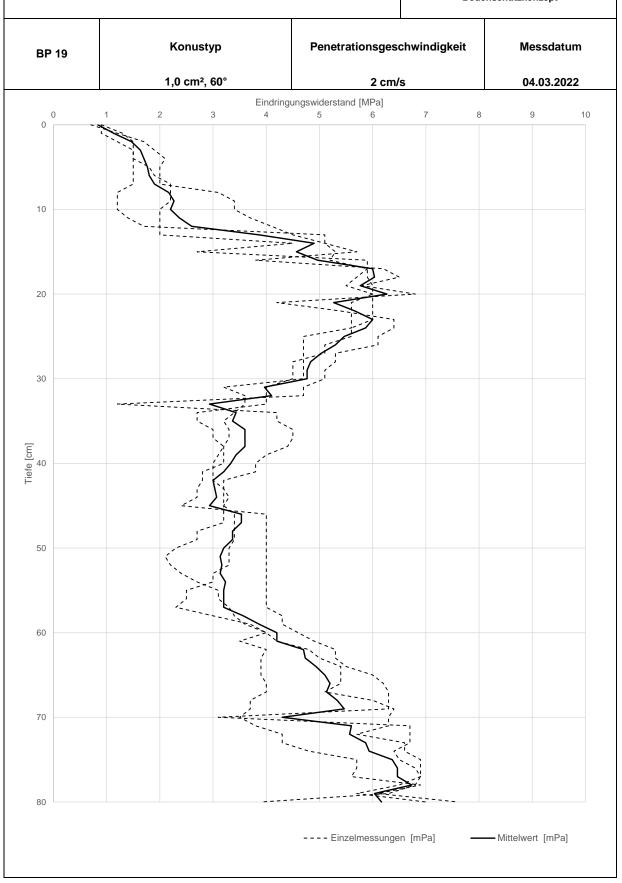
Pen	etrologger Typ Eijkelkamp 0	6.15.SA		Gastra	Bodenso	ung Wertinge hutzkonzep	en - 1401 t
BP 17	Konustyp	Pene	etrationsges	chwindigke	eit	Messd	atum
	1,0 cm², 60°		2 cm/	s		04.03.2022	
0 1		dringungswiders 5	stand [MPa] 6	7	0	0	4
	2 3 4	5		7	8	9	10
10							
20							
30							
40							
50							
60							
70							

---- Einzelmessungen [mPa]

- Mittelwert [mPa]



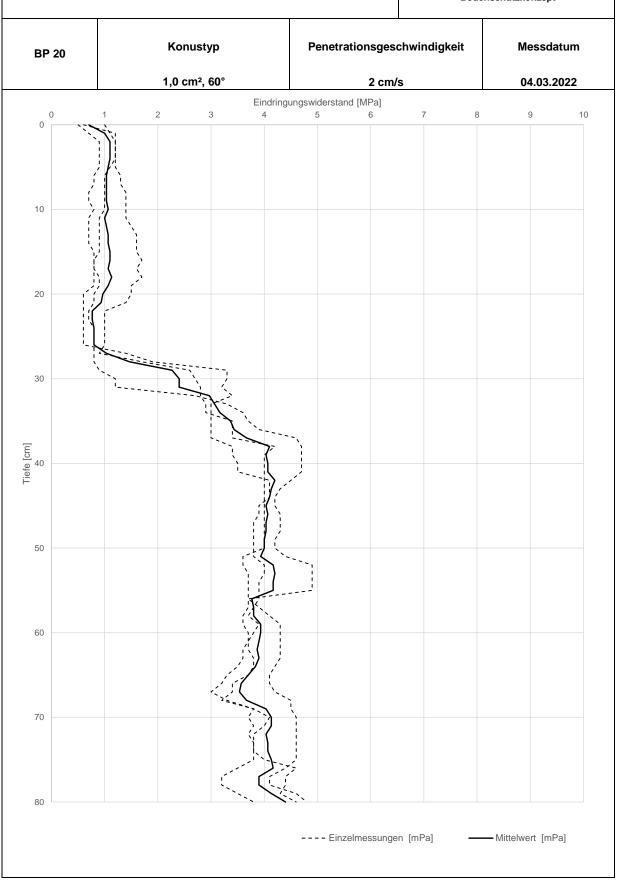
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852


Projekt:

BP 18	Konustyp 1,0 cm², 60°	Penetrationsgescl 2 cm/s		Messdatum 04.03.2022
0 1		dringungswiderstand [MPa]	7 8	9 1
10				
20				
30				
40				
50				
60				
70				
80		, , , , , , , , , , , , , , , , , , ,		



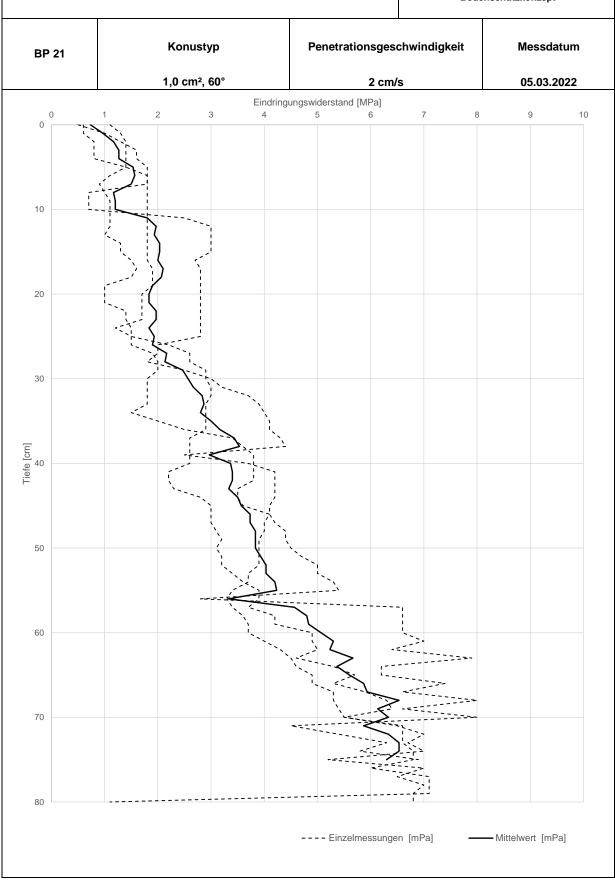
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	


Penetrologger Typ Eijkelkamp 06.15.SA





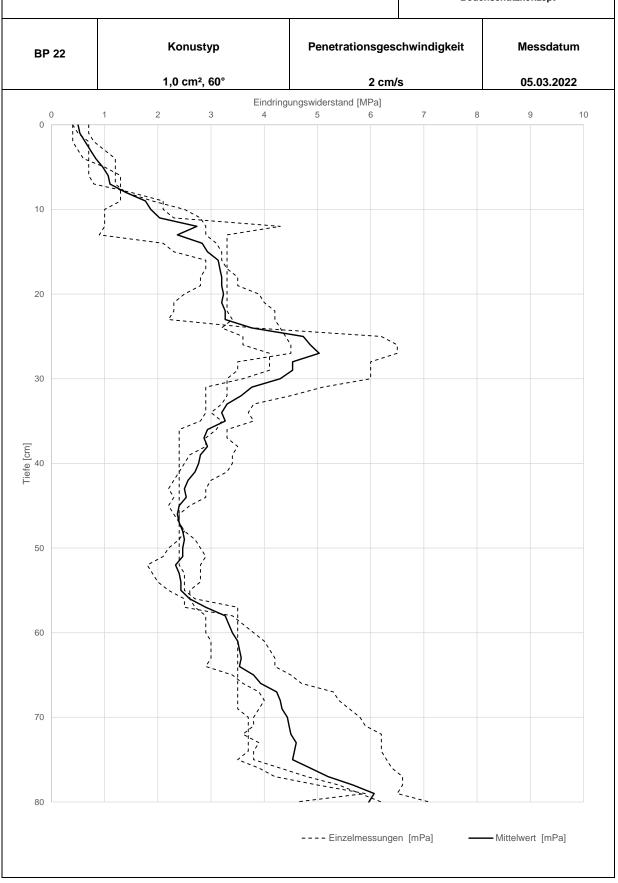
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	


Penetrologger Typ Eijkelkamp 06.15.SA





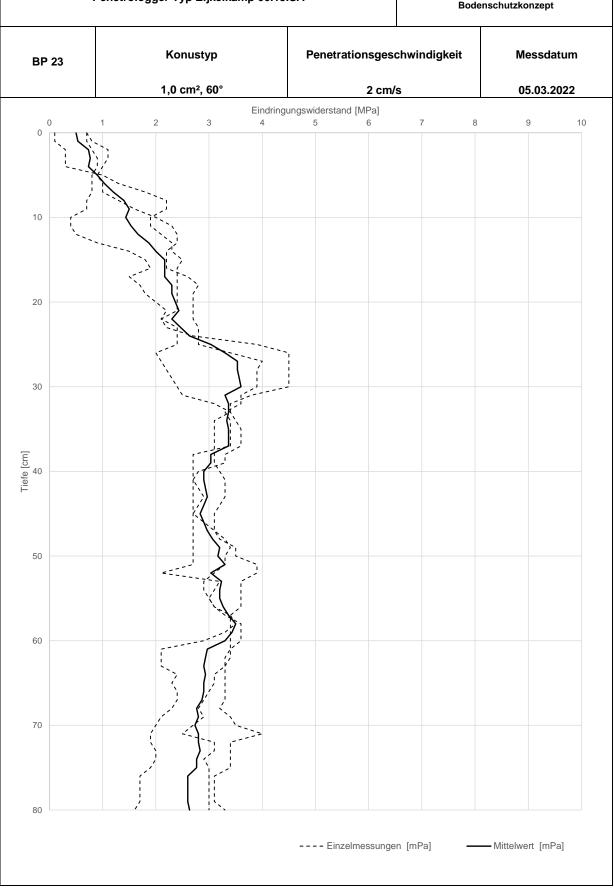
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	
	Datum: Bearbeiter: Projekt-Nr.:


Penetrologger Typ Eijkelkamp 06.15.SA





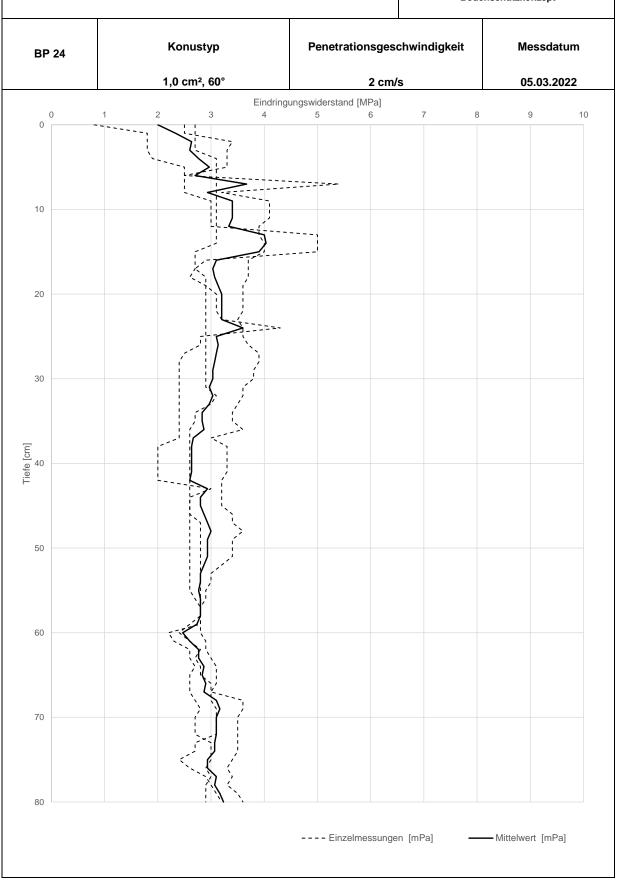
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	


Penetrologger Typ Eijkelkamp 06.15.SA





Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	

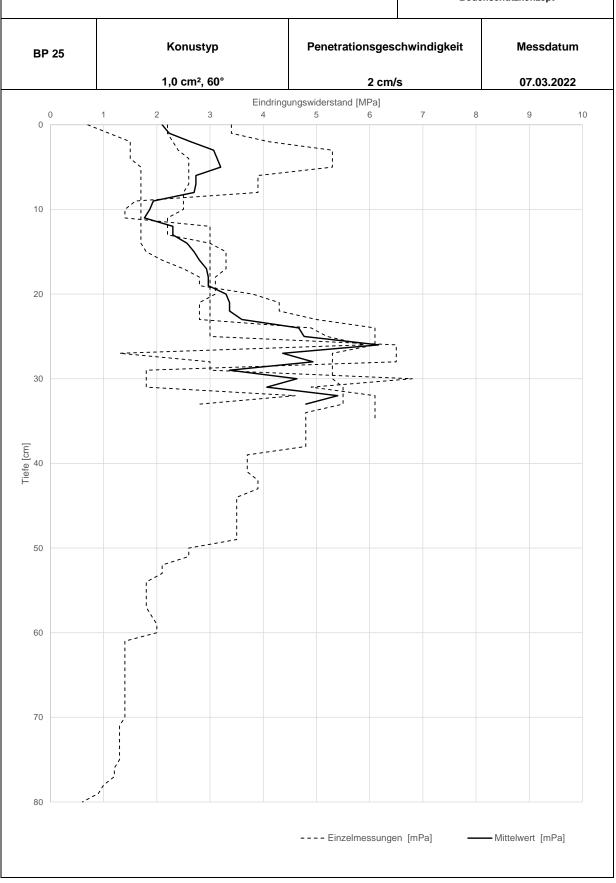

Penetrologger Typ Eijkelkamp 06.15.SA





Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA






Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

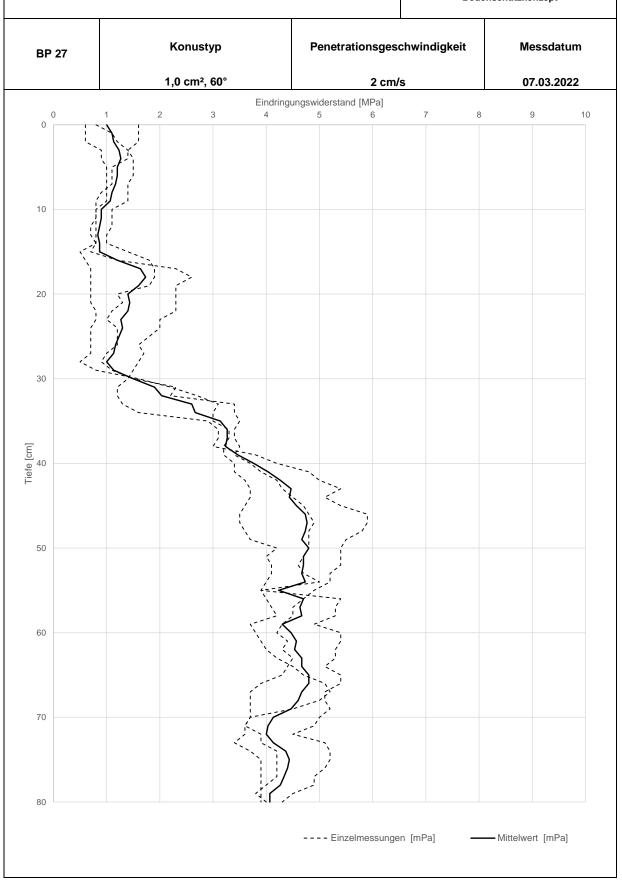
Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA





Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	


Penetrologger Typ Eijkelkamp 06.15.SA

BP 26	1,0 cm², 60°	2 cm/	s	07.03.2022
0 1		dringungswiderstand [MPa] 5 6	7 8	9 1
10				
20				
30				
40				
50				
60				
70		<del></del>		
80	اً اُنا اِ			



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA

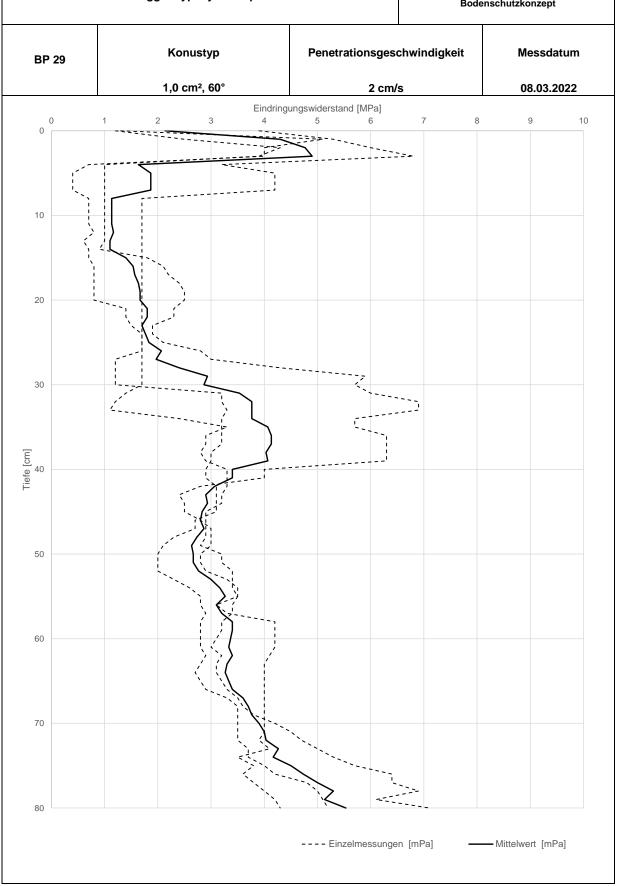




Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:


BP 28	Konustyp 1,0 cm², 60°	Penetrationsgeschwindig 2 cm/s	keit Messdatum 07.03.2022
	Ein	dringungswiderstand [MPa]	
0 1	2 3 4	5 6 7	8 9 10
10			
20			
30			
40			
50			
60			
70			
80			



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA

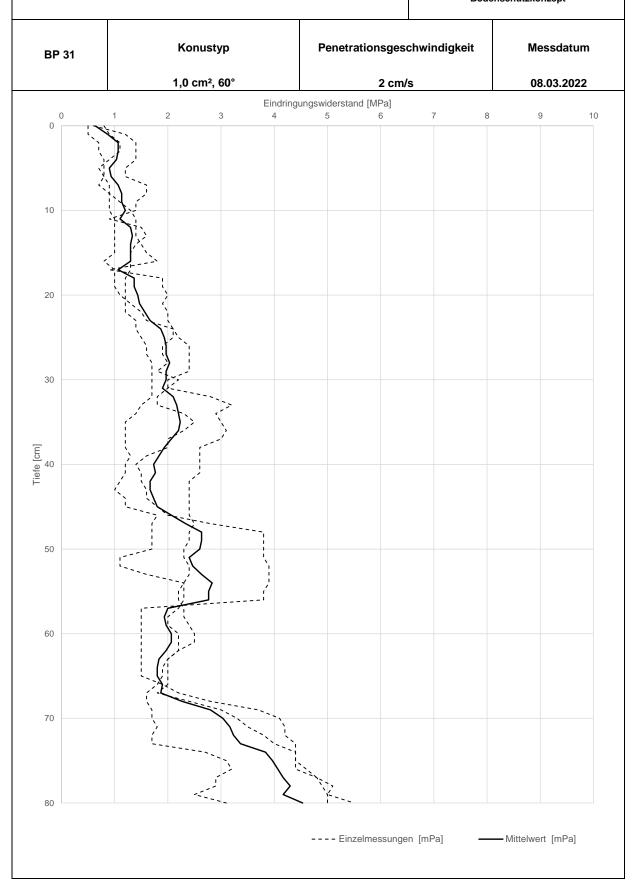




Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

BP 30	1.0 c	m², 60°		2 cm/s		08.03.2	022
		Einc	dringungswidersta	nd [MPa]	I		
0	1 2	3 4	5	6 7	8	9	1
10							
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
20							
30							
40							
50							
60							
70							
80	./V						

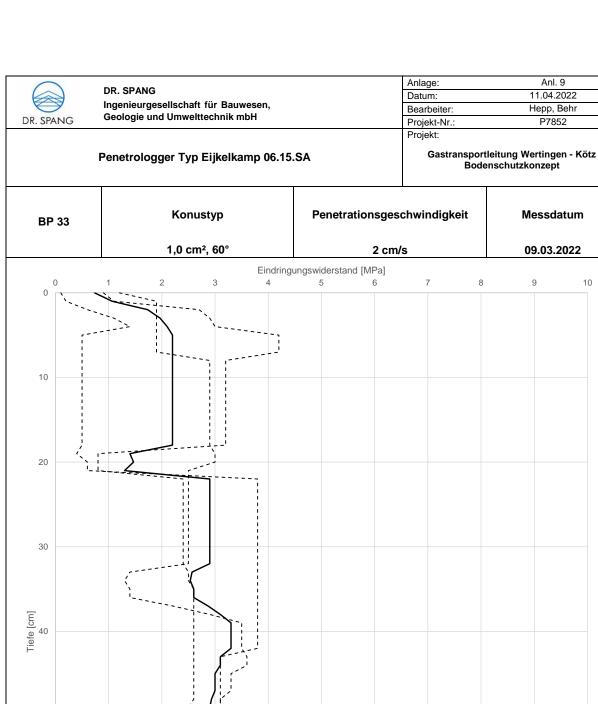



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852
	Datum: Bearbeiter:

Projekt:

Gastransportleitung Wertingen - Kötz Bodenschutzkonzept

# Penetrologger Typ Eijkelkamp 06.15.SA






Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Behr
Projekt-Nr.:	P7852

Projekt:

	SP 32 Konustyp		Penetrationsgeschwindigkeit				Messdatum	
	1,0 cm², 60°			2 cm/s			08.03.	2022
0	1 2 3	Eindringu 4	ungswiderstand 5	d [MPa] 6	7	8	9	1
0		!,[						
	```	أمر لم						
10		2-1						
]}							
	المناسبة المناسبة المناسبة المناسبة المناسبة	·\;						
00	.======================================							
20								
				-				
30			!					
	آ ـ ا		·,					
)						
,		} (
40	``,							
	1			'				
]]===-			
		i	للمستسترية -					
50								
50				,				
				_ = 1				
60								
70			-' 					
		,						
		i						
80								

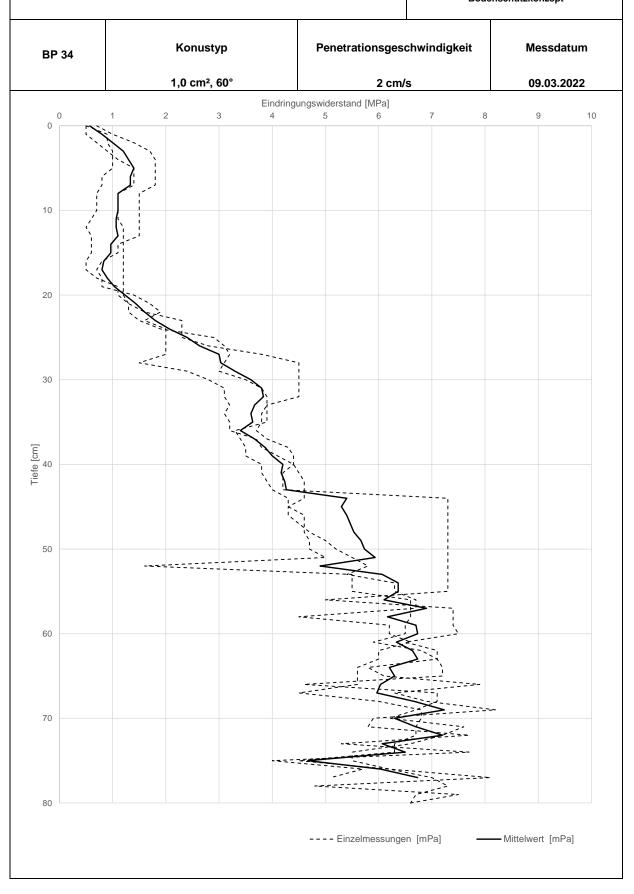
	1,0 cm², 60°	2 cm/s	09.03.2022
		indringungswiderstand [MPa]	09.03.2022
0	1 2 3	4 5 6 7	8 9 1
`			
		,	
10			
20			
'-			
30			
40			
!	المراج ال		
50			
60			
70			
	ميلين المالية	<u></u>	
80		1	
		Einzelmessungen [mPa]	
			[4]

Anl. 9

11.04.2022

Hepp, Behr

P7852



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Hepp, Behr
Projekt-Nr.:	P7852

Projekt:

Gastransportleitung Wertingen - Kötz Bodenschutzkonzept

Penetrologger Typ Eijkelkamp 06.15.SA

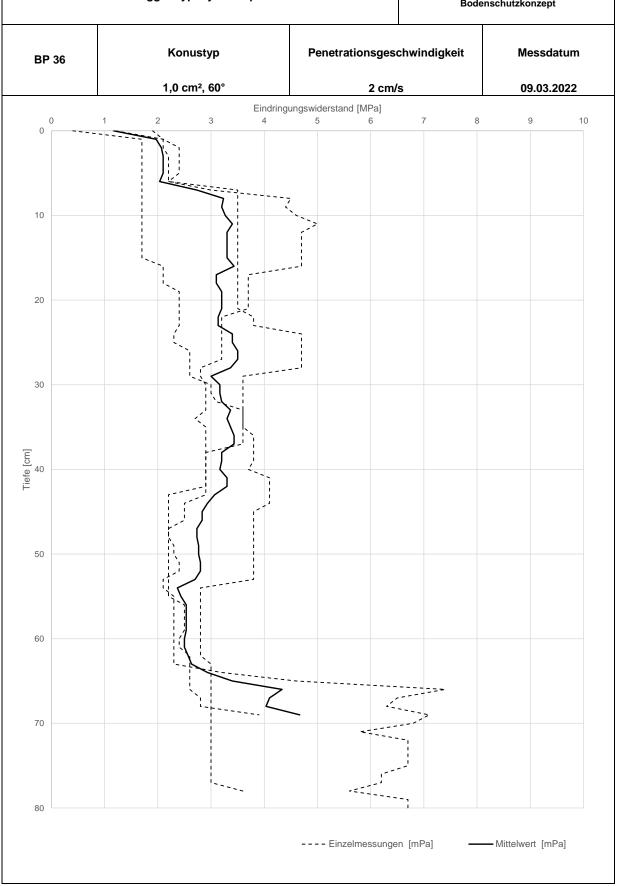
 Anlage:
 Anl. 9

 Datum:
 11.04.2022

 Bearbeiter:
 Hepp, Behr

 Projekt-Nr.:
 P7852

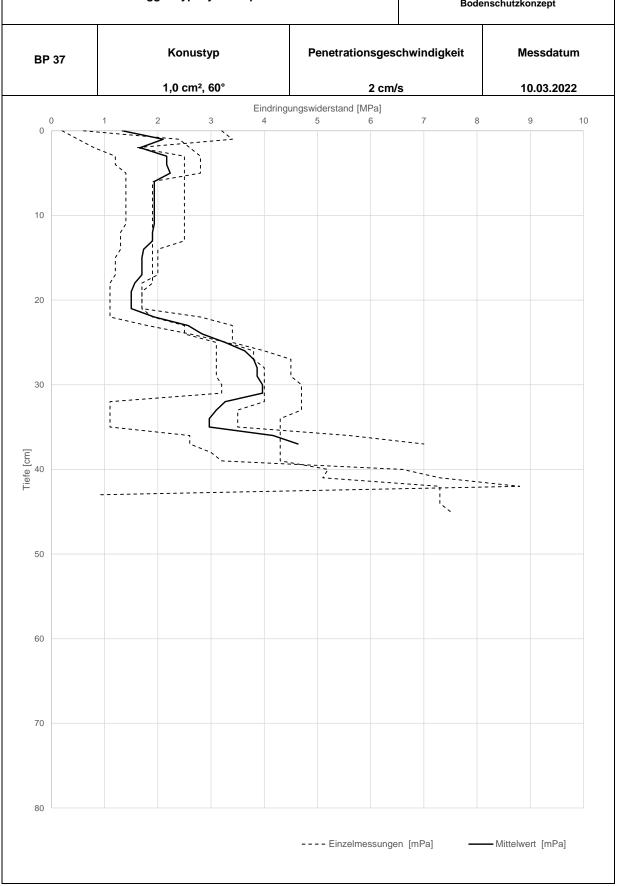
Projekt:


BP 35	Konustyp	Penetrationsgesch		Messdatum
	1,0 cm², 60°	2 cm/s dringungswiderstand [MPa]		09.03.2022
0 1	2 3 4	5 6	7 8	9
10				
20				
30				
40				
50		,		
60				
70				
80	1	•		

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Hepp, Behr
Projekt-Nr.:	P7852

Projekt:

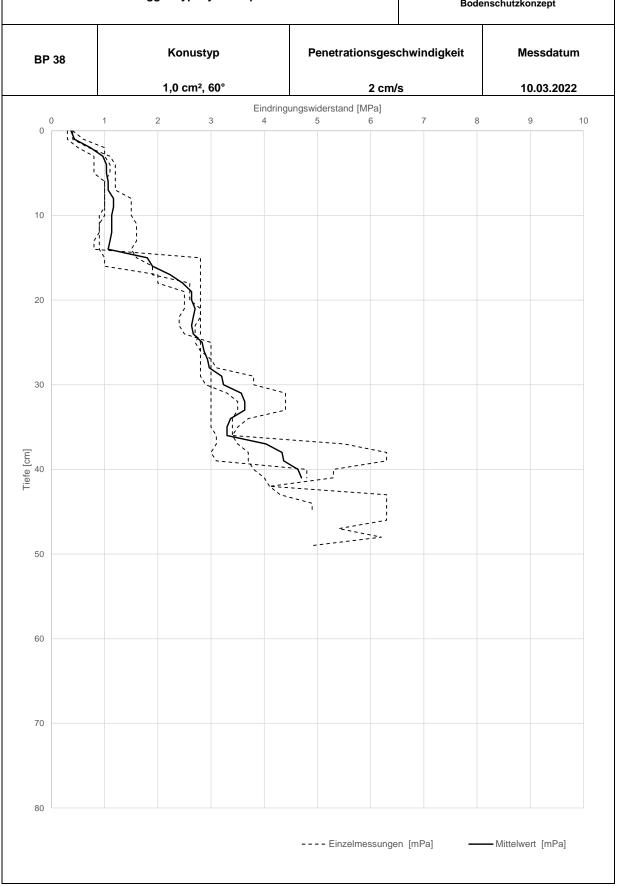
Penetrologger Typ Eijkelkamp 06.15.SA



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Hepp, Behr
Projekt-Nr.:	P7852

Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Hepp, Behr
Projekt-Nr.:	P7852

Projekt:

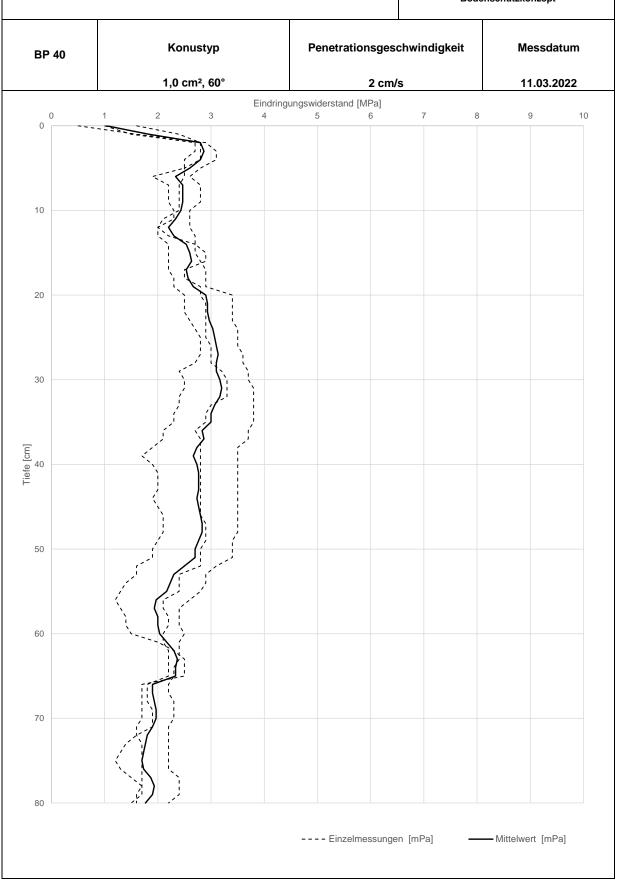
Penetrologger Typ Eijkelkamp 06.15.SA

 Anlage:
 Anl. 9

 Datum:
 11.04.2022

 Bearbeiter:
 Hepp, Behr

 Projekt-Nr.:
 P7852


Projekt:

BP 39	Konustyp 1,0 cm², 60°	Penetrationsgeschwi 2 cm/s		Messdatum 10.03.2022
	Eir	ndringungswiderstand [MPa]		
0 1	2 3	5 6	7 8	9 1
10				
20				
30	X			
	 			
40				
R				
50				
60				
	\			
70				
80				

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852

Projekt:

BP 41	Konustyp	Penetrationsges		Messda	
	1,0 cm², 60°	2 cm	/s	11.03.2	2022
0 1	2 3 4	5 6	7 8	9	10
10					
20					
30					
40					
50					
60					
00		~-,			
70		,'			
)			
80					

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
	Datum: Bearbeiter:

Projekt:

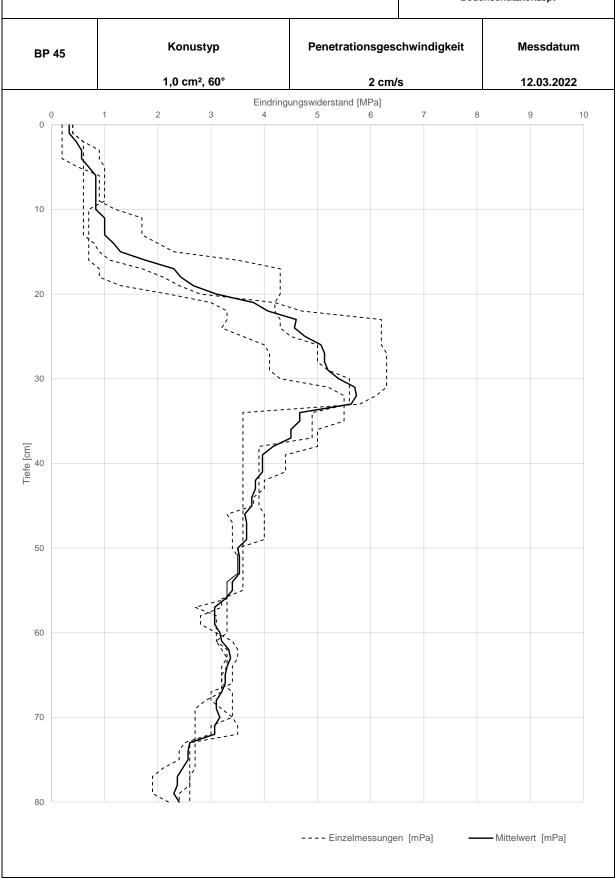
BP 42	Konustyp	Penetrationsges		Messdatum
	1,0 cm², 60°	2 cm/dringungswiderstand [MPa]	s	11.03.2022
0 1	2 3 4	5 6	7 8	9 10
10				
20		`,		
30				
40				
50				
60				
70				
80				

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852

Projekt:

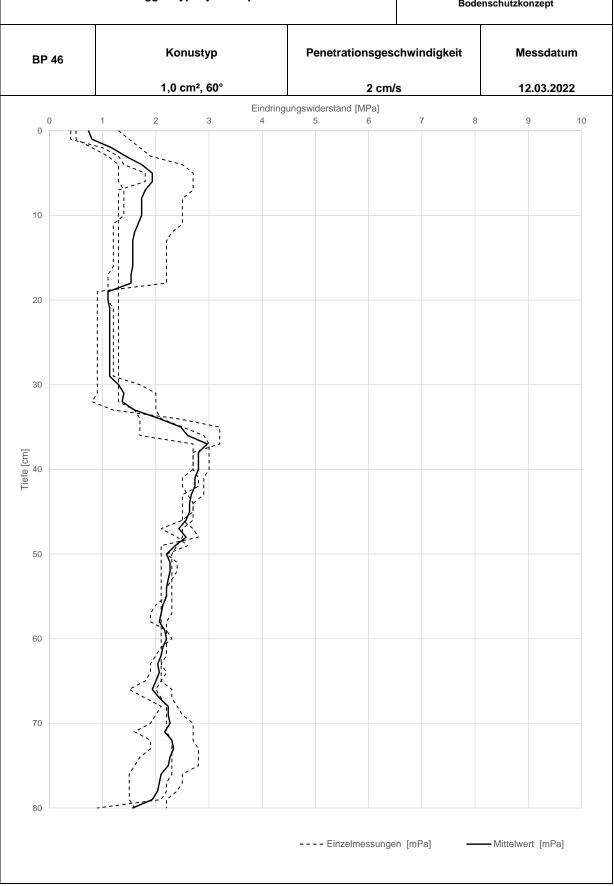
BP 43	Konustyp 1,0 cm², 60°	Penetrationsgesch 2 cm/s		Messdatum 11.03.2022
		dringungswiderstand [MPa]		11.03.2022
0 1	2 3 4	5 6	7 8	9
,				
10				
]			
20				
30	11-			
		······································		
40	- h	1		
50	ر , ر , پینسان			
60				
		7		
70	ī	المسترأز		
80		1		

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852


Projekt:

BP 44	Konustyp	Penetrationsgeschwindigkeit	Messdatum
	1,0 cm², 60°	2 cm/s	12.03.2022
0 1	2 3 4	dringungswiderstand [MPa] 5 6 7	8 9 1
10			
20			
30			
40			
50			
60			
70			

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
Projekt:	


Penetrologger Typ Eijkelkamp 06.15.SA

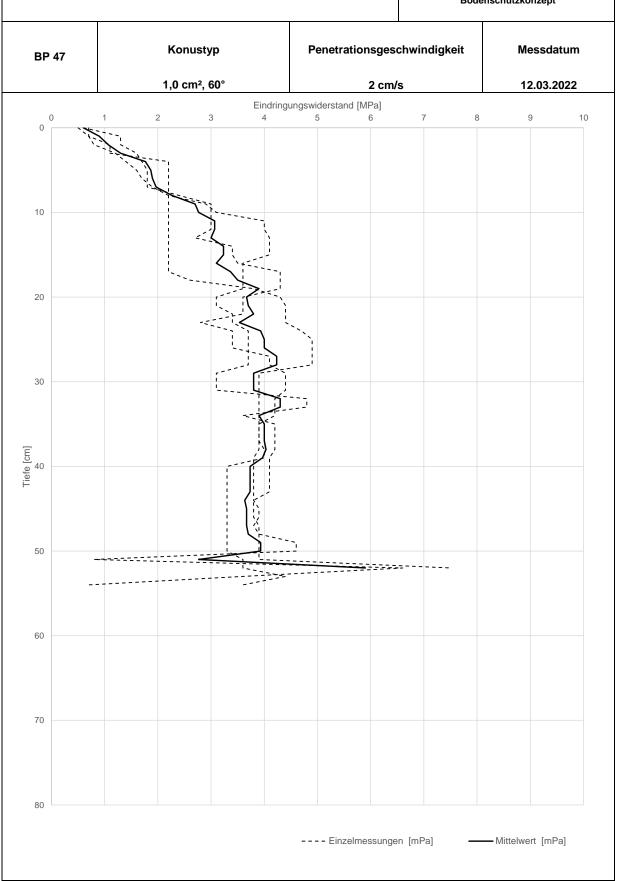
Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA

DR. SPANG Ingenieurgesellschaft für Bauwesen,

Geologie und Umwelttechnik mbH

 Anlage:
 Anl. 9

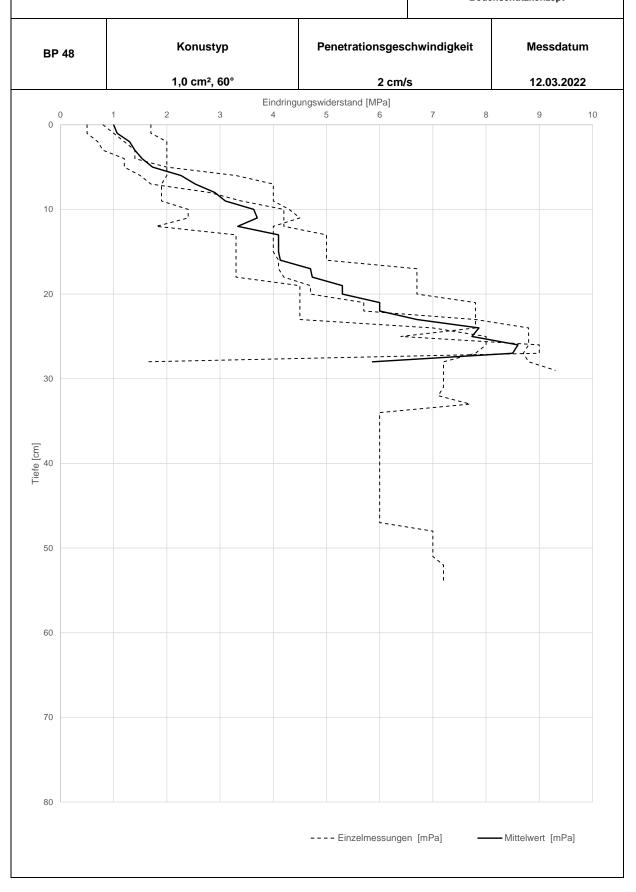

 Datum:
 11.04.2022

 Bearbeiter:
 Hepp

 Projekt-Nr.:
 P7852

Projekt:

Penetrologger Typ Eijkelkamp 06.15.SA



Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
Bearbeiter:	

Projekt:

Gastransportleitung Wertingen - Kötz Bodenschutzkonzept

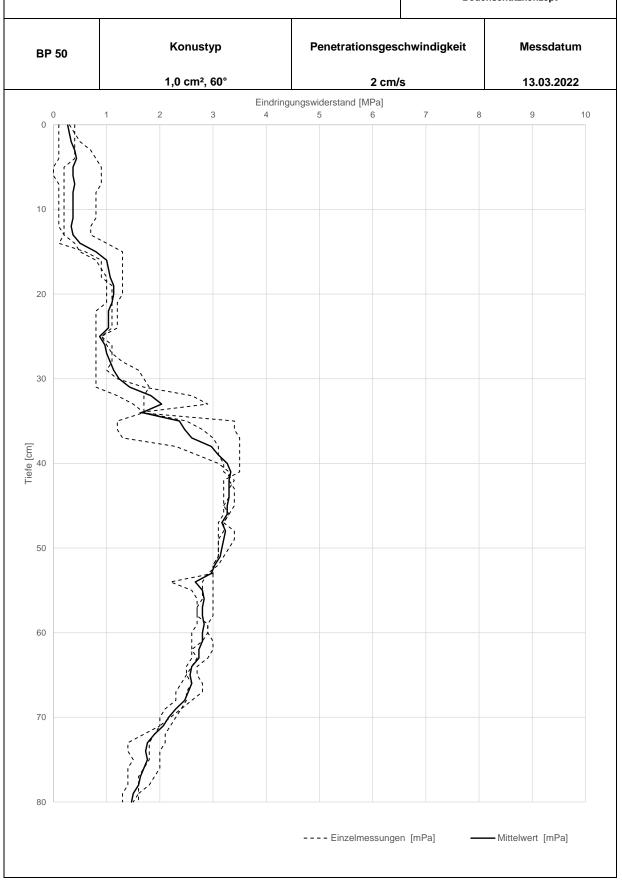
Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852

Projekt:

BP 49	Konustyp	Penetrationsgeso		Messdatum		
	1,0 cm², 60°	2 cm/s dringungswiderstand [MPa]	5	12.03.2022		
0 1	2 3 4	5 6	7 8	9 1		
10						
20						
30						
40						
50						
60						
70						
80						

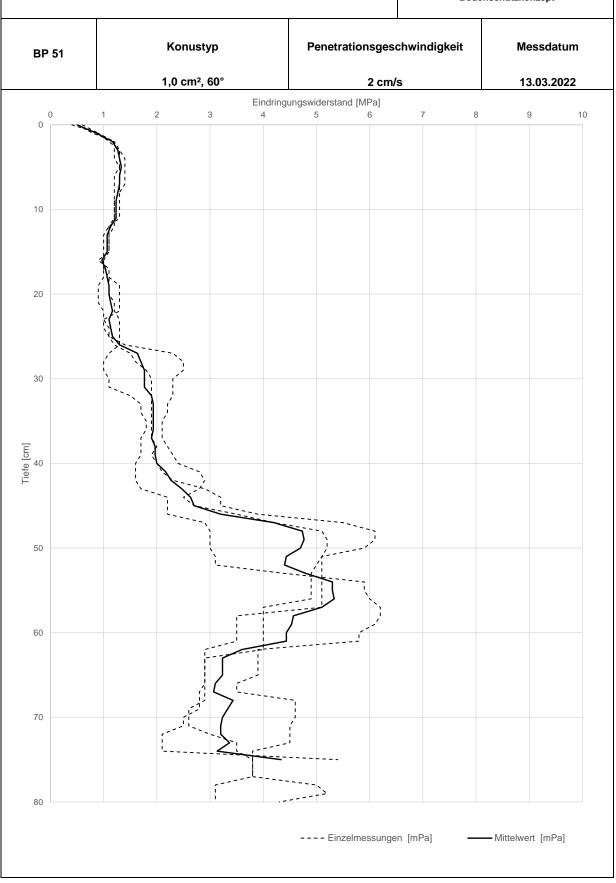
 Anlage:
 Anl. 9


 Datum:
 11.04.2022

 Bearbeiter:
 Hepp

 Projekt-Nr.:
 P7852

Projekt:


Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852
Projekt:	

Penetrologger Typ Eijkelkamp 06.15.SA

Anlage:	Anl. 9
Datum:	11.04.2022
Bearbeiter:	Нерр
Projekt-Nr.:	P7852

Projekt:

	1,0 cm², 60°			2 cm/s				13.03.2022	
Eindringungswiderstand [MPa]									LULL
0 1	2	3	4	5	6	7	8	9	10
10									
20									
30		Z							
40									
50									
60					,,				
70									
80									